Get to know us on:

U.S.A. Based Manufacturer.
Supporting Businesses Worldwide.

FIND US: 1140 Gervais Avenue, Maplewood, MN 55109

CONTACT: (651) 653-5098
[email protected]

HāF Equipment Acquires Semi-Bulk Systems, Expanding Ingredient Handling Capabilities

HāF Equipment Acquires Semi-Bulk Systems, Expanding Ingredient Handling Capabilities…Read More

Sanitation Methods for Food Processing Equipment

by: Maria Buss and Nicole Johnson

With over three decades of expertise in bulk material handling, we understand the critical importance of sanitation in food processing operations. Ensuring both hygienic construction and effective cleaning methods is paramount in minimizing the risk of bacterial growth and foodborne illnesses caused by pathogens such as Salmonella and E. coli. The World Health Organization estimates that nearly 1 in 10 people globally fall sick each year from contaminated food, underscoring the need for rigorous sanitary practices. At HaF Equipment, we prioritize these principles, integrating Clean-in-Place (CIP) and Clean-out-of-Place (COP) systems into our machinery to provide comprehensive, efficient, and safe cleaning solutions that support the highest standards of hygiene in the industry. By leveraging these advanced systems in cleaning food processing equipment, we help our clients maintain optimal cleanliness, enhance operational efficiency, and ensure the safety and quality of their products.

Clean-in-Place (CIP) vs. Clean-out-of-Place (COP) Systems

At HaF Equipment, we prioritize systems that support CIP and COP cleaning techniques.

Clean-in-Place (CIP): These automated systems clean the internal surfaces of process equipment without disassembly. Clean-in-Place (CIP) systems offer an efficient solution for enhancing the sanitation process. By minimizing exposure to high temperatures and chemicals, they contribute to a safer workplace environment while also aiding in the effective management of water and chemical expenses. CIP is ideal for tanks, pipes, and pumps. When designing CIP systems, it is important to factor in additional components like extra ports, different gaskets, waterproof equipment, airlock dummy shafts, sprayballs, and wands to ensure thorough cleaning.

The benefits of CIP include:

    • Reduced Labor Costs: Automating cleaning saves time and manpower compared to manual cleaning.
    • Improved Safety: Eliminates the need for workers to handle harsh chemicals at high temperatures.
    • Enhanced Cleaning Consistency: Automated systems deliver consistent cleaning results every cycle.

Clean-out-of-Place (COP): Equipment unsuitable for CIP cleaning, such as fittings, utensils, and tank vents, is cleaned in a COP system. These components are submerged in a tank containing a hot chemical solution and agitated for a deep clean. In the COP procedure, the immersion washer is crucial in effectively cleansing items. These elongated tanks utilize powerful jets of detergent solution to create agitation and remove residues from processed materials and ingredients while they are immersed in hot water. Subsequently, the components undergo a thorough sanitization process to ensure a deep clean. Once cleaned, the parts are reassembled and reintegrated into the manufacturing equipment. It is important to note, however, that prior to immersing equipment in a COP tank, heavily solid equipment must be pre-rinsed. Failure to do so may result in the chemical bath becoming overloaded with excess debris, leading to re-deposition on the cleaned equipment. Larger items that cannot be fully submerged in the tank may obstruct circulation ports, impeding turbulence and hindering the cleaning process. In such cases, manual cleaning is recommended. Smaller and more intricate equipment parts are better suited for COP systems as they are typically inaccessible through CIP procedures. 

Key points about COP systems are:

    • Effective for Complex Parts: Cleans intricate equipment parts that CIP systems may not reach.
    • Manual Pre-Cleaning Necessary: Heavily soiled items require pre-rinsing before COP cleaning to prevent overloading the chemical bath.
    • Visual Inspection Crucial: After cleaning, parts should be visually inspected or swabbed to verify cleanliness.

Choosing the Right Sanitary Design System

CIP and COP systems offer advantages, and the optimal choice depends on your specific needs. CIP systems generally require a higher initial investment but offer significant labor savings in the long run. The following table summarizes key differences:

Feature
CIP System
COP System
Cleaning Method
Automated
Immersion
Disassembly Required
No
Yes
Labor Intensity
Lower
Higher
Initial Investment
Higher
Lower

Comparing CIP and COP Systems

Equipment

Both CIP and COP systems require a range of equipment. These can include:

  • Pumps 
  • Heat Exchangers 
  • Sensors (temperature, etc.) 
  • Tanks 
  • Flow Meter 
  • Strainer 
  • Dryer 
  • Sprayball

Shared Benefits and Cleaning Chemicals

Both CIP and COP systems: 

  • Enhance efficiency.
  • Reduce cleaning time and cost.
  • Improve the hygiene of equipment and manufacturing plants
  • Increase the lifespan of the equipment.
  • Are compliant with regulatory standards
  • Exceeds regulatory standards with the capability of cleaning deep crevices that are often overlooked during manual cleaning.

Tip: Using both systems will drastically improve overall cleanliness, potentially allowing a facility to forgo manual cleaning altogether. 

Both systems utilize similar cleaning chemicals, typically including:

  • Caustic solution (breaks down bonds between contaminants and surfaces)
  • Acidic solution (neutralizes the caustic solution and removes mineral deposits)
  • Sanitizer/disinfectant (eliminates microorganisms)

The specific cleaning cycle steps will vary based on the equipment and product type. 

A typical CIP cycle involves:

  • Pre-rinse
  • Wash
  • Intermediate rinse
  • Acid rinse
  • Sanitize
  • Final rinse

A typical COP cycle involves:

  • Dry cleaning 
  • Rinse parts in the COP tank (with cool water under 80 degrees Fahrenheit) 
  • Clean the equipment with a soap or chemical 
  • Rinse the parts in the COP tank 
  • Complete a visual inspection or swabbing (ensures the parts were adequately cleaned) 
  • Sanitize the parts in the tank 

Food manufacturers must invest in sanitary equipment design and implement effective cleaning procedures. By choosing systems that prioritize these elements, they can ensure a safe and hygienic production environment, safeguard their brand reputation, and promote consumer trust in their products.

ABOUT HaF

HaF Equipment offers turnkey services for projects big and small. Our team understands the concerns of our customers and takes the time to listen. We develop a plan and communicate along the way. If you need someone you can trust and want to eliminate the stress of managing all the details of your next project, HaF is Ready To Connect.

CONTACT US today to discuss your next project and how our team can help from concept to system solution.

Understanding the Impact of Whey Protein in Bulk Material Handling for Bakery and Cheese Production

blocks of cheese

by: Dan Fried and Abby Cesarz

Whey protein, a byproduct of the cheese production process, plays a critical role in the bakery and cheese industries. Its high nutritional value and versatile applications have made it a key ingredient in numerous food products. For production decision-makers, it’s essential to understand the significance of whey protein in the context of bulk material handling equipment. This knowledge is crucial for optimizing production processes and maintaining a competitive edge in the market.

What is Whey Protein?

Whey protein is a complete protein derived from cow’s milk, containing all nine essential amino acids for human nutrition. It is also a valuable byproduct of the cheesemaking process. Enzymes are added to milk to separate the solid curds (used for cheese) from the liquid whey. This liquid whey is then processed to extract the protein, which is subsequently dried and often flavored for various applications.

Uses of Whey Protein in Industry

Whey protein is used extensively in the bakery and cheese production industries for several reasons:

1. Nutritional Supplements: Whey protein is a popular ingredient in dietary supplements due to its high-quality protein content and easy absorption.

2. Weight Management: In weight management products, whey protein promotes satiety and helps reduce overall calorie intake.

3. Clinical Nutrition: Whey protein is utilized in clinical nutrition to improve the health status of patients, especially the elderly, by enhancing their immune response and maintaining muscle mass.

4. Food Industry Applications: Whey protein is a versatile ingredient that enhances the texture, solubility, and shelf life of various food products such as ice creams, baked goods, and beverages.

Industry Overview

The global whey protein market is experiencing significant growth, driven by increasing health and wellness awareness and expanding applications in various sectors. North America and Europe lead the market due to their advanced health and fitness industries. Key players such as Glanbia, Nestlé, and WheyCo dominate the industry with extensive distribution networks and innovative product portfolios.

Whey Protein Production Process

1. Milk Collection and Pasteurization: Cow’s milk, containing 3.5% protein, 4% fat, and 4.6% lactose, is cooled and transported to cheese processing facilities. The milk is pasteurized to eliminate bacteria.

2. Separation: Enzymes are added to separate the milk into curds (casein) and whey. The liquid whey is then sent to protein manufacturing plants.

3. Processing: The liquid whey undergoes various treatments, including filtration and drying, to produce whey protein concentrate (WPC), which typically contains about 90% protein.

4. Flavoring and Packaging: The whey protein is flavored in high-speed blenders and packaged using specialized equipment such as dryers, mixers, and bag fillers.

Essential Whey Protein Processing Equipment

  • Drying Equipment: Dryers, screws, sifters, and magnets are used to remove moisture and ensure the purity of the protein.
  • Blending Equipment: Bag breakers, mixers, and airlocks are employed to blend the whey protein with flavors and other ingredients.
  • Packaging Equipment: Bag fillers, scales, bag sealers, and metal detectors ensure the final product is safely and accurately packaged.

For decision-makers in the bakery and cheese production industries, investing in advanced bulk material handling equipment is essential for an efficient whey protein production process. Partnering with a reliable equipment provider ensures the quality and safety of the products and enhances operational efficiency. By leveraging the expertise and technology offered by HaF Equipment, companies can stay competitive, meet growing market demands, drive innovation in their whey protein production processes, and maintain a strong market position in the dynamic industry.

ABOUT HaF

HaF Equipment offers turnkey services for projects big and small. Our team understands the concerns of our customers and takes the time to listen. We develop a plan and communicate along the way. If you need someone you can trust and want to eliminate the stress of managing all the details of your next project, HaF is Ready To Connect.

CONTACT US today to discuss your next project and how our team can help from concept to system solution.